Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Document Type
Year range
1.
International Journal of Finance and Economics ; 2023.
Article in English | Scopus | ID: covidwho-2287471

ABSTRACT

Volatility forecasting, a central issue in financial risk modelling and management, has attracted increasing attention after several major financial market crises. In this article, we draw upon the literature on volatility forecasting and hybrid models to construct the Hybrid-long short-term memory (LSTM) models to forecast the intraday realized volatility in three major US stock indexes. We construct the hybrid models by combining one or multiple traditional time series models with the LSTM model, and incorporating either the estimated parameters, or the predicted volatility, or both from the statistical models as additional input values into the LSTM model. We perform the out-of-sample test of our Hybrid-LSTM models in volatility forecasting during the coronavirus disease 2019 (COVID-19) period. Empirical results show that the Hybrid-LSTM models can still significantly improve the volatility forecasting performance of the LSTM model during the COVID-19 period. By analysing how the construction methods may influence the forecasting performance of the Hybrid-LSTM models, we provide some suggestions on their design. Finally, we identify the optimal Hybrid-LSTM model for each stock index and compare its performance with the LSTM model on each day during our sample period. We find that the Hybrid-LSTM models' great capability of capturing market dynamics explains their good performance in forecasting. © 2023 John Wiley & Sons Ltd.

2.
9th Edition of IEEE Region 10 Humanitarian Technology Conference, R10-HTC 2021 ; 2021-September, 2021.
Article in English | Scopus | ID: covidwho-1672861

ABSTRACT

The worldwide spread of COVID-19. © 2021 Institute of Electrical and Electronics Engineers Inc.. All rights reserved.

3.
Journal of Geo-Information Science ; 23(11):1924-1925, 2021.
Article in Chinese | Scopus | ID: covidwho-1643912

ABSTRACT

The COVID-19 epidemic poses a great threat to public health and people's lives, which has initiated new challenges to the prevention and control system of the epidemic in China. In all efforts for epidemic control and prevention, predicting the risk of epidemic spread is of great practical importance for scientific prevention and control, and precise strategies. To predict the risk of an epidemic rapidly and quantitatively, this paper fused multi-source spatiotemporal data and established a risk prediction model for epidemic transmission by coupling LSTM algorithm and cloud model. Firstly, a simulation model of the spatiotemporal spread of infectious diseases was built based on GIS and LSTM algorithm, which simulated the infectious disease's spatiotemporal transmission process by learning rules in historical epidemic data. At the same time, to improve the simulation accuracy, this paper took 1 km × 1 km for the spatial scale, and days for the temporal scale as the study scale. Secondly, this paper applied the simulated data of infectious cases and the spatiotemporal influence factors on the spread of the epidemic to construct risk evaluation indicators. Finally, the cloud model and adaptive strategies were applied to construct an epidemic risk assessment model. In this way, the epidemic risk assessment at multiple spatial scales was achieved. In the empirical study phase, based on the Beijing COVID-19 epidemic data from 11 June 2020 to 25 June 2020, this paper simulated the process of the spatial evolution of the epidemic from 26 June 2020 to 1 July 2020. To test the advantage of the LSTM model applied to simulate spatiotemporal spread of infectious diseases, four machine learning models were introduced for comparison, including GA-BP Neural Network, Decision Regression Tree, Random Forest, and Support Vector Machine. The results were as follows: ① Compared with other conventional machine learning models, the LSTM model with time-series relationship had higher simulation accuracy (MAE=0.002 61) and better fitting degree (R-Square=0.9455). This showed that the LSTM model considering the temporal relationship between epidemic data was more suitable for epidemic spatial evolution simulation. ② The application results showed that the coupled model can not only fully consider the influence of infection source factors, weather factors, epidemic spread factors and epidemic prevention factors on the spread of transmission risk and reflect the trend of risk evolution, but also quickly quantify regional risk levels. Therefore, the coupled model based on LSTM algorithm and cloud model can effectively predict the transmission risk of epidemic, and also provide a method reference for establishing spatial-temporal transmission models and assessing epidemic risk. 2021, Science Press. All right reserved.

SELECTION OF CITATIONS
SEARCH DETAIL